Online Appendix Optimal Redistributive Policy in Debt Constrained Economies

Monica Tran-Xuan*

University at Buffalo

A Sovereign game

Before setting up the game, consider the general environment in which the government's policy includes the decision to default on debt $\{d_t\}_{t=0}^{\infty}$, where $d_t \in \{0, 1\}$ and $d_t = 0$ implies default.¹ The government's budget constraint becomes

$$G_t + (1+r_t)B_t^g \le \tau_t^n w_t L_t + \tau_t^k r_t K_t + \tau_t^d \left(r_t A_t + \left[(1-\tau_t^k) r_t^k - \delta \right] K_t \right) + d_t B_{t+1}^g + T_t.$$

As the government cannot commit to any of its policies, one can think that the government, domestic agents, and international lenders enter into a sovereign game in which they determine their actions sequentially. In every period, the state variable for the game is $\left\{B_t^g, \left(k_t^i, a_t^i\right)_{i \in I}\right\}$. The timing of the actions is as follows:

- Government chooses $z_t^G = (\tau_t^n, \tau_t^d, \tau_t^k, T_t, d_t, B_{t+1}^g) \in \Pi$ such that it is consistent with the government budget constraint.
- Agents choose allocation $z_t^{H,i} = (c_t^i, l_t^i, k_{t+1}^i, a_{t+1}^i)$ subject to their budget constraints, the representative firm produces output by choosing $z_t^F = (K_t, L_t)$, and the international lenders choose holdings of bonds $z_t^* = (B_{t+1}^g, A_{t+1})$ given the interest rates r_t^* .

Define $h^t = (h^{t-1}, z_t^G, (z_t^{H,i})_{i \in I}, z_t^F, z_t^*, p) \in H^t$ as the history at the end of period t. Note that the history incorporates the government's policy, allocation, and prices. Define $h_p^t = (h^{t-1}, z_t^G) \in H_p^t$ as the history after the government announce its policies at period t. The government strategy

^{*}E-mail address: monicaxu@buffalo.edu.

¹Since the paper focuses on characterizing the no-default equilibrium, the set-up from the main text does not explicitly model the default decision and instead takes into account that the government will pay back its international debt $(d_t = 1)$.

is $\sigma_t^G : H^{t-1} \to \Pi$. The individual agent's strategy is $\sigma_t^{H,i} : H_p^t \to \mathbb{R}^3_+ \times \mathbb{R}$. The firm has the strategy $\sigma_t^F : H_p^t \to \mathbb{R}^2_+$, and the international lenders have the strategy $\sigma_t^* : H_p^t \to \mathbb{R}^2_+$. Prices are determined by the pricing rule: $p : H_p^t \to \mathbb{R}_+$.

Definition 1 (Sustainable equilibrium). A sustainable equilibrium is $(\sigma^G, \sigma^H, \sigma^F, \sigma^*)$ such that (i) for all h^{t-1} , the policy z_t^G induced by the government strategy maximizes the weighted utility by λ subject to the government's budget constraint; (ii) for all h_p^t , the strategy induced policy $\{z_t^G\}_{t=0}^{\infty}$, allocation $\{z_t^{H,i}, z_t^F, z_t^*\}_{t=0}^{\infty}$, and prices $\{r_t^*\}_{t=0}^{\infty}$ constitute a competitive equilibrium with taxes.

The following focuses on characterizing a set of sustainable equilibria in which deviation triggers the worst payoff. In this case, the value of deviation is the worst equilibrium payoff.

Proposition 1 (Sustainable equilibrium). An allocation and policy $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ can be part of sustainable equilibrium if and only if (i) given z^{G} , there exist prices p such that $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G}, p \right\}$ is a competitive equilibrium with taxes for an open economy; and (ii) for any t, there exists $\underline{U}_{t}(\cdot)$ such that $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ satisfies the constraint

$$\sum_{s=t}^{\infty} \beta^{s-t} \sum_{i \in I} \lambda^{i} \pi^{i} U^{i} \left(c_{s}^{i}, l_{s}^{i} \right) \geq \underline{U}_{t}(K_{t})$$

Proof. Define $\underline{U}_t(K_t)$ as the maximum discounted weighted utility for the domestic agents in period t when the government deviates. In period t, the domestic agents and the government can borrow abroad. In subsequent period s > t, the economy reverts to the worst equilibrium.

Suppose $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ is an outcome of the sustainable equilibrium. Then by the optimal problems of the government, domestic agents, and international lenders, $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ maximizes the weighted utility of the agents, satisfies the government budget constraint, and satisfies the international lender's problem at period 0. Thus, $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ is a competitive equilibrium with policies. For any period t and history h^{t-1} , an equilibrium strategy that has the government deviate in period t triggers reverting to the worst equilibrium in period s > t. Such a strategy must deliver a weighted utility value that is at least as high as the right-hand side of (1). So $\left\{ \left(z^{H,i}\right)_{i\in I}, z^{F}, z^{G} \right\}$ satisfies condition (ii).

Next, suppose $\{(z^{H,i})_{i\in I}, z^F, z^G\}$ satisfies conditions (i) and (ii). Let h^{t-1} be any history such that there is no deviation from z^G up until period t. Since $\{(z^{H,i})_{i\in I}, z^F, z^G\}$ maximizes agents period-0 weighted utility, it is optimal for the agents if the government's strategy continues the plan from period t onward. Consider a deviation plan $\hat{\sigma}^G$ at period t that receives $U_t^d(K_t)$ in period t and U^{aut} for period s > t. Because the plan is constructed to maximize period-t utility at K_t , the right-hand side of (1) is the maximum attainable utility under $\hat{\sigma}^G$. Given that $\{(z^{H,i})_{i\in I}, z^F, z^G\}$ satisfies condition (ii), the original no-deviation plan is optimal.

B Numerical appendix

This section explains the calculation of deviation utility and the computational algorithm solving the model.

B.1 Deviation utility

The deviation utility \underline{U} is calculated as the maximum weighted utility attained from a competitive equilibrium with taxes where there is no access to international financial markets. Given that output is equal to the total efficiency-unit labor supply, one has

$$\underline{U} \equiv \max_{\substack{c_t^i, l_t^i, \tau_t^n, T_t \\ t = 0}} \sum_{i=1}^{\infty} \beta^t \sum_{i \in I} \lambda^i \pi^i U^i(c_t^i, l_t^i)$$

s.t. $c_t^i + b_{t+1}^{i,d} = (1 - \tau_t^n) l_t^i - T_t + (1 + r_t) b_t^{i,d}$
 $G_t + (1 + r_t) B_t^d \le \tau_t^n L_t + T_t + B_{t+1}^d$

There exist a vector of market weights $\hat{\varphi}$ such that

$$\underline{U} \equiv \max_{C_t, L_t, \hat{\varphi}, T} \sum_{t=0}^{\infty} \beta^t \left[\hat{\Phi}_C^W \frac{C_t^{1-\sigma}}{1-\sigma} - \hat{\Phi}_L^W \frac{L_t^{1+\nu}}{1+\nu} \right]$$

s.t. $C_t + G_t \leq L_t$

where $\hat{\psi}_c^i, \hat{\psi}_l^i, \hat{\Phi}_C^V, \hat{\Phi}_L^V, \hat{\Phi}_C^W, \hat{\Phi}_L^W$ are calculated using $\hat{\varphi}$.

B.2 Computational algorithm

State variables: μ, Γ

- 1. Guess μ and φ . Compute η .
 - (a) Construct a grid for $\mu_t = (\beta R^*)^t$ for t periods. Construct a grid for Γ Initial guess of the expectation $V(\mu_t, \Gamma_{t-1}) = \sum_{s=t}^{\infty} \beta^{\tau-t} \left[\Phi_C^P \frac{C_s^{1-\sigma}}{1-\sigma} - \Phi_L^P \frac{L_s^{1+\nu}}{1+\nu} \right].$
 - (b) Assume the constraint does not bind in t: $\gamma_t = 0$. Solve for the allocation C_t, L_t using the following first-order conditions

$$\begin{bmatrix} \mu_t \Phi_C^W + \Phi_C^m \Gamma_{t-1} \end{bmatrix} C_t^{-\sigma} = \mu$$
$$\begin{bmatrix} \mu_t \Phi_L^W + \Phi_L^m \Gamma_{t-1} \end{bmatrix} L_t^{\nu} = \mu$$

(c) Compute $V(\mu_{t+1} = \beta R^* \mu_t, \Gamma_t = \beta R^* \Gamma_{t-1})$, then compute

$$\begin{split} A_t &= \sum_{s=t}^{\infty} \beta^{\tau-t} \left[\Phi_C^P \frac{C_s^{1-\sigma}}{1-\sigma} - \Phi_L^P \frac{L_s^{1+\nu}}{1+\nu} \right] \\ &= \Phi_C^P \frac{C_t^{1-\sigma}}{1-\sigma} - \Phi_L^P \frac{L_t^{1+\nu}}{1+\nu} + \beta V(\mu_{t+1},\Gamma_t) \end{split}$$

(d) Check if $A_t \ge \underline{U}_t$. If it is, proceed to the next step. If not, solve for C_t, L_t, γ_t using these optimality equations

$$\begin{bmatrix} \mu_t \Phi_C^W + \Phi_C^m \Gamma_{t-1} \end{bmatrix} C_t^{-\sigma} = \mu$$
$$\begin{bmatrix} \mu_t \Phi_L^W + \Phi_L^m \Gamma_{t-1} \end{bmatrix} L_t^{\nu} = \mu$$
$$\Phi_C^P \frac{C_t^{1-\sigma}}{1-\sigma} - \Phi_L^P \frac{L_t^{1+\nu}}{1+\nu} + \beta V(\mu_{t+1} = \beta R^* \mu_t, \Gamma_t = \beta R^* (\Gamma_{t-1} + \gamma_t)) = \underline{U}_t$$

(e) Given C_t, L_t, γ_t (γ_t can be zero or not), compute $V(s_{t+1}, \mu_{t+1} = \beta R^* \mu_t, \Gamma_t = \beta R^* (\Gamma_{t-1} + \gamma_t))$. Update the value function

$$V^{n+1}(s_t, \Gamma_{t-1}) = \Phi_C^P \frac{C_t^{1-\sigma}}{1-\sigma} - \Phi_L^P \frac{L_t^{1+\nu}}{1+\nu} + \beta V^n(\mu_{t+1} = \beta R^* \mu_t, \Gamma_t = \beta R^*(\Gamma_{t-1} + \gamma_t))$$

2. Compute residuals to find μ and φ

$$r^{\mu} = \sum_{t=0}^{\infty} q_t \left[L_t - G_t - C_t \right] - B_0$$

$$r^{\varphi}_{ij} = \sum_{t=0}^{\infty} \beta^t \left[\Phi^m_C \left(\psi^i_c - \psi^j_c \right) C_t^{1-\sigma} - \Phi^m_L \left(\psi^i_l - \psi^j_l \right) L_t^{1+\nu} \right]$$

$$r = (r^{\mu})^2 + \sum_{i,j} (r^{\varphi}_{ij})^2$$
(B.1)

3. Find μ and φ such that r is minimized using a Nelder-Mead algorithm.